A Bombieri-vinogradov Theorem for All Number Fields
نویسنده
چکیده
Abstract. The classical theorem of Bombieri and Vinogradov is generalized to a non-abelian, non-Galois setting. This leads to a prime number theorem of “mixed-type” for arithmetic progressions “twisted” by splitting conditions in number fields. One can view this as an extension of earlier work of M. R. Murty and V. K. Murty on a variant of the Bombieri-Vinogradov theorem. We develop this theory with a view to applications in the study of the Euclidean algorithm in number fields and arithmetic orbifolds.
منابع مشابه
A Variant of the Bombieri-vinogradov Theorem in Short Intervals with Applications
We generalize the classical Bombieri-Vinogradov theorem to a short interval, non-abelian setting. This leads to variants of the prime number theorem for short intervals where the primes lie in arithmetic progressions that are “twisted” by a splitting condition in a Galois extension L/K of number fields. Using this result in conjunction with recent work of Maynard, we prove that rational primes ...
متن کاملThe binary Goldbach problem with one prime of the form p = k 2 + l 2 + 1
We prove that almost all integers n ≡ 0 or 4 (mod 6) can be written in the form n = p1 + p2, where p1 = k 2 + l + 1 with (k, l) = 1. The proof is an application of the half-dimensional and linear sieves with arithmetic information coming from the circle method and the Bombieri-Vinogradov prime number theorem.
متن کاملSmall Gaps between Primes Ii (preliminary)
We examine an idea for approximating prime tuples. 1. Statement of results (Preliminary) In the present work we will prove the following result. Let pn denote the nth prime. Then (1.1) lim inf n→∞ (pn+1 − pn) log pn(log log pn)−1 log log log log pn < ∞. Further we show that supposing the validity of the Bombieri–Vinogradov theorem up to Q ≤ X with any level θ > 1/2 we have bounded differences b...
متن کاملOn a Theorem of Bombieri-vinogradov Type
for any e > 0 and A > 0, the implied constant in the symbol <g depending at most on E and A (see [1] and [14]). The original proofs of Bombieri and Vinogradov were greatly simplified by P. X. Gallagher [4]. An elegant proof has been given recently by R. C. Vaughan [13]. For other references see H. L. Montgomery [10] and H. -E. Richert [12]. Estimates of type (1) are required in various applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012